WH5850, WV5850

Absoluter Drehgeber mit

Benutzerhandbuch

Inhaltsverzeichnis

1	Allgen	neine Hinweise	. 5
1.1	Dok	umentation	5
1.1.	.1 H	istorie	5
1.2	Defi	nitionen	5
1.2.	1 A	bkürzungen	5
1.3	Best	rimmungsgemäße Verwendung	6
1.4	Eins	chalten der Betriebsspannung	6
2	LED-A	nzeige	. 7
2.1	BF -	Bus Failure LED2	7
2.2	SF -	System Failure LED3	8
2.3	ENC-	-Encoder LED4	8
2.4	L/A	1 & L/A2 - Link/Activity LED1, LED5	8
3	Funkti	onsbeschreibung	. 8
3.1	Para	metrierung	9
3.1.	.1 Ir	mplementierte Profilversionen	9
3.1.	.2 Ir	mplementierte und optionale Features	9
3.3	1.2.1	FSU - Fast Start Up	10
3.3	1.2.2	LLDP - Link Layer Discovery Protocol	10
3 . 2	1.2.3	MRP - Media Redundancy Protocol	
3.1	1.2.4	Isochronous Mode IRT	11
3.1.	.3 A:	zyklische Kommunikation	12
3.2		dardtelegramme für zyklische Prozessdaten	
3.2.	.1 A	ufbau der Standardtelegramme	
3.2	2.1.1	Standardtelegramm 81	
	2.1.2	Standardtelegramm 82	
	2.1.3	Standardtelegramm 83	
	2.1.4	Standardtelegramm 84	
	2.1.5	Standardtelegramm 86	
	2.1.6	Standardtelegramm 88	
3.2.		elegrammdaten	
	2.2.1	Positionswert G1_XIST1 (Slave ⇒ Master)	
	2.2.2	Positionswert G1_XIST2 (Slave ⇒ Master)	
	2.2.3	Positionswert G1_XIST3 (Slave ⇒ Master)	
3.2	2.2.4	Geschwindigkeitswert NIST_A (Slave ⇒ Master)	
3.2	2.2.5	${\sf Geschwindigkeitswert\ NIST_B\ (Slave} \Rightarrow {\sf Master})$	16
3.2	2.2.6	Steuerwort: G1_STW (Master \Rightarrow Slave)	16
3.2	2.2.7	Steuerwort: STW2_ENC (Master \Rightarrow Slave)	17
3.2	2.2.8	${\sf Zustandswort:} \ {\sf G1_ZSW} \ ({\sf Slave} \Rightarrow {\sf Master})$	17
3.2	2.2.9	Zustandswort: ZSW2_ENC (Slave \Rightarrow Master)	18
3.2	2.2.10	Preset-Signal: G1_XIST_PRESET_B und Trigger Bit (Master \Rightarrow Slave)	19
3.2	2.2.11	Preset-Signal: G1_XIST_PRESET_C und Trigger Bit (Master ⇒ Slave)	19

3.3 Kon	figurationsparameter	19
3.3.1 G	enerelle Modul Parameter	19
3.3.1.1	Code Sequence Counter Clockwise	20
3.3.1.2	CLASS 4 Functionality	20
3.3.1.3	Disable G1_XIST1 Preset Control	20
3.3.1.4	Scaling Function Control	20
3.3.1.5	MUR – Measuring Units per Revolution	21
3.3.1.6	TMR - Total Measuring Range	22
3.3.1.7	Velocity Measuring Unit	22
3.3.1.8	PRESET Wert	23
3.3.2 A	zyklische Parameterdaten	23
3.3.2.1	Schreibzugriff	25
3.3.2.2	Lesezugriff	26
3.3.2.3	Beispiele zum Lesen und Schreiben eines Parameters	27
3.3.3 I8	&M Daten	28
3.3.4 B	ase Mode Parameter	28
3.4 Para	ameter	29
3.4.1 P	ROFIdrive Parameter	29
3.4.1.1	PNU 922: Telegram Selection	29
3.4.1.2	PNU 925: Number of Controller Sign-Of-Life Failures Tolerated	30
3.4.1.3	PNU 964: Drive Unit Identification	30
3.4.1.4	PNU 965: Profile Identification Number	31
3.4.1.5	PNU 974: Base Mode Parameter Access Service Identification	31
3.4.1.6	PNU 975: DO Identification	32
3.4.1.7	PNU 979: Sensor Format	32
3.4.1.8	PNU 980: Defined Parameters	33
3.4.2 In	nterface Parameter	34
3.4.2.1	PNU 61000: Name of Station	34
3.4.2.2	PNU 61001: IP of Station	35
3.4.2.3	PNU 61002: MAC of Station	35
3.4.2.4	PNU 61003: Default Gateway of Station	36
3.4.2.5	PNU 61004: Subnet Mask of Station	36
3.4.3 E	ncoder Parameter	36
3.4.3.1	PNU 60000: N2/N4 Velocity Reference Value	37
3.4.3.2	PNU 60001: Velocity Value Normalization	37
3.4.3.3	PNU 65000: Preset Value 32bit	38
3.4.3.4	PNU 65001: Operating Status	38
3.4.3.5	PNU 65002: Preset Value 64Bit	39
3.4.3.6	PNU 65004: Function Control	40
3.4.3.7	PNU 65005: Parameter Control	41
3.4.3.8	PNU 65006: Measuring Units per Revolution (MUR)	42
3.4.3.9	PNU 65007: Total Measuring Range in Measuring Units (TMR)	42
3.4.3.10	PNU 65008: Measuring Units per Revolution (MUR) 64 Bit	43
3.4.3.11	PNU 65009: Total Measuring Range in Measuring Units (TMR) 64 Bit	43

4 Blockschaltbild......44

1 Allgemeine Hinweise

1.1 **Dokumentation**

Zu diesem Produkt gibt es folgende Dokumente:

- Datenblatt beschreibt die technischen Daten, die Abmaße, die Anschlussbelegungen, das Zubehör und den Bestellschlüssel.
- Montageanleitung beschreibt die mechanische und die elektrische Montage mit allen sicherheitsrelevanten Bedingungen und den dazugehörigen technischen Vorgaben.
- Benutzerhandbuch zur Inbetriebnahme und zum Einbinden des Drehgebers in ein Feldbussystem.

Diese Dokumente sind auch unter http://www.siko-global.com/p/wv5850, http://www.siko-global.com/p/wh5850 zu finden.

Weitere Informationen und Hilfestellungen zu diesem Gerät sind ebenfalls dort zu finden.

1.1.1 Historie

Änderung	Datum	Beschreibung
159/22	23.08.2022	Dokument erstellt

1.2 Definitionen

Falls nicht explizit angegeben, werden dezimale Werte als Ziffern ohne Zusatz angegeben (z. B. 1234), binäre Werte werden mit "b" (z. B. 1011b), hexadezimale Werte mit "h" (z. B. 280h) hinter den Ziffern gekennzeichnet. Einzelne Bits von größeren logischen Einheiten werden mit ihrer Wertigkeit nach einem Punkt genannt (z. B. CW.9; Steuerwort Bit 9).

1.2.1 Abkürzungen

Abkürzung	Beschreibung
API	Application Process Identifier
ccw	counter clock wise (engl.), gegen den Uhrzeigersinn, Zählrichtung
CW	clock wise (engl.) im Uhrzeigersinn, Zählrichtung
DAP	Device Access Point. Es repräsentiert den Zugangspunkt der Einheit zur Kommunikation.
EEPROM	Electrically erasable programmable read-only memory. Nichtflüchtiger, elektronischer Speicherbaustein, dessen gespeicherte Information elektrisch gelöscht werden kann.
IRT	Isochronous Realtime – Isochrone Echtzeit
LSB	Least Significant Bit
MAP	Module Access Point. Der MAP ist Teil des DAP.

Abkürzung	Beschreibung
MRPD	Media Redundancy for Planned Duplication - Ermöglicht das nahtlose
	Umschalten der Verbindungswege bei einer Störung eines
	Verbindungszweiges, wie z.B. bei einem Kabelbruch.
MSB	Most Significant Bit
MUR	Measuring Units per Revolution
NDR	Number of Distinguishable Revolutions
PAP	Parameter Access Point. Der PAP ist ein Data Record im MAP-Submodul.
PNU	Parameter Number - Nummer des jeweiligen PROFINET Encoder Parameters.
rpm	Revolutions per Minute
RT	Real Time - Umfasst Zykluszeiten von bis zu 1 ms.
Sync	Synchronisation
TMR	Total Measuring Range
USF	Universal Skalierung Funktion

Tabelle 1: Abkürzungen

1.3 Bestimmungsgemäße Verwendung

Für die weitere Funktionsbeschreibung wird ein normaler Betrieb des Systems mit unveränderter Werkseinstellung vorausgesetzt, wo nicht anders beschrieben.

Das vorliegende Gerät ist ein absoluter Drehgeber mit integrierter Industrial-Ethernet-Schnittstelle zur entsprechenden Wellenmontage. Er erfasst die Position rotativer Achsen und gibt die Position in Form eines eindeutigen digitalen Zahlenwertes aus. Anzeigen und Schnittstelle sind nur bei externer Energieversorgung aktiv. Die Abtastung des Singleturn (ST) Gray-Code Messgebers erfolgt optisch. Ohne externe Energieversorgung werden Geberänderungen des Multiturns (MT) mit Batterieunterstützung erfasst. Betriebszustände oder Gerätestörungen werden von farbigen LEDs angezeigt.

Über die Schnittstelle können Steuerwerte verändert, Istwert (Position, Geschwindigkeit) sowie der Status des Drehgebers abgefragt und Geräteparameter angepasst werden.

1.4 Einschalten der Betriebsspannung

ACHTUNG	Die intern vom Drehgeber ausgewerteten Ausgabe-Daten-Bytes werden beim
	Einschalten (Anlegen der Versorgungsspannung), bei jedem Profinet-
	Verbindungsabbruch (z. B. Abstecken der Profinet-Datenleitung) oder wenn
	der Profinet-Controller "IOPS = BAD" setzt (z. B. wenn die SPS auf "STOP"
	geht) auf 00h gesetzt und damit gelöscht.

ACHTUNG	Bei den Standardtelegrammen 81, 82, 83 und 84 gem. Encoder-Profil V4.2, ist der Parking Sensor im Initialzustand aktiv, womit der Drehgeber keine Daten ausgibt bzw. die Position eingefroren ist. Um den Drehgeber in den Betriebszustand zu versetzen, kann der Parking Sensor über G1_STW.14 deaktiviert werden.
---------	---

ACHTUNG

Ab Werk ist das Standardtelegramm 81 hinterlegt. Es beinhaltet keine Geschwindigkeitswerte.

Nach dem Einschalten initialisiert sich der Drehgeber. Während der Initialisierung wird ein Systemtest durchgeführt und es werden die Geräteparameter aus dem nichtflüchtigen Speicher in den Arbeitsspeicher des Geräte-Controllers geladen.

Bei der erstmaligen Verwendung werden bei der Initialisierung die Default-Werte verwendet. Nach Wiederkehr der externen Energieversorgung arbeitet der Drehgeber mit den zuvor nullspannungssicher abgespeicherten oder von der Steuerung in der Hochlaufphase übermittelten Parametern.

Sofern keine Störung festgestellt wurde, nimmt der Drehgeber den normalen Betrieb auf.

2 LED-Anzeige

Die LED2, LED3 und LED4 informieren über den Status des Drehgeber Ethernet-Moduls. Die LED1 und LED5 informieren über PROFINET-Port Aktivität. Die Funktionen der LEDs sind fest definiert und können nicht geändert werden.

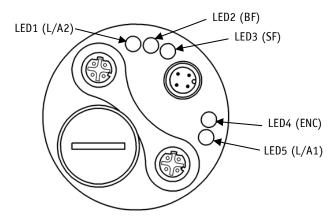


Abb. 1: LEDs

BF - Bus Failure LED2 2.1

LED Zustand	Beschreibung
aus	Kein Fehler: PROFINET-Verbindung wurde korrekt aufgebaut.
rot	Keine Konfiguration / keine oder eingeschränkte physikalische Verbindung: Positionsfehler, Grenzwertüberschreitung der Temperatur, Inbetriebnahme-Fehler, Watchdog oder Prozessdatenschnittstelle zwischen Microcontroller und Slave.
rot, blinkt	Kein Datenaustausch

2.2 SF - System Failure LED3

LED Zustand	Beschreibung
aus	Kein Fehler
rot	Keine Konfiguration / keine oder eingeschränkte physikalische Verbindung: Positionsfehler, Grenzwertüberschreitung der Temperatur, Inbetriebnahme-Fehler, Watchdog oder Prozessdatenschnittstelle zwischen Microcontroller und Slave.
rot, blinkt	Gerät passiviert
rot, blinkt 0.5 Hz	PROFINET-Verbindung wurde aufgebaut, jedoch fehlen die "User-Parameter-Daten" (BF00-Telegramm).
rot, blinkt 1.0 Hz	Interner Speicherfehler (FLASH oder RAM)
rot, blinkt 5.0 Hz	Interner Positionssensor (ICLG): Keine gültigen Daten verfügbar.

2.3 ENC-Encoder LED4

LED Zustand	Beschreibung
aus	Keine Betriebsspannung
grün, gelb	ACTIVITY: Datenübertragung aktiv
grün	OPERATIONAL: Der vollständige Prozessdatenverkehr ist aktiv. Ist- und Sollwerte werden übertragen.

2.4 L/A1 & L/A2 - Link/Activity LED1, LED5

LED Zustand	Beschreibung
aus	Keine Verbindung, keine Aktivität
gelb	Verbindung erkannt, keine Aktivität
gelb, flackert	Verbindung erkannt, Aktivität

3 Funktionsbeschreibung

Für die weitere Beschreibung werden Grundlagen etablierter IT-Standards, Grundkenntnisse in der Handhabung und Programmierung von speicherprogrammierbaren Steuerungen und Vertrautheit mit PROFINET® Mechanismus vorausgesetzt. PROFINET tauscht Daten, einschließlich Qualitäts- und Asset-Management-Informationen, schnell und deterministisch aus. Das Protokoll ist in der IEC 61158 und IEC 61784 standardisiert.

Gemäß der PROFINET-Spezifikation entspricht der Drehgeber dem Device Model:

- Eine IO-Geräteinstanz.
- Jede IO-Geräteinstanz umfasst einen oder mehrere Applikationsprozesse, die durch die Identifier (API = Application Process Identifier) definiert werden.
- Jeder API beinhaltet einen oder mehrere Slots.
- Jeder Slot beinhaltet einen oder mehrere Subslots.
- Jeder Subslots beinhaltet einen oder mehrere Kanäle.

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 8 von 45

3.1 Parametrierung

Der PROFINET muss durch Parametrierung entsprechend dem Zweck der Anwendung konfiguriert werden. Die GSDML-Datei für den Geber muss in der SPS Engineering Software, die zur Aktivierung dieser Konfiguration verwendet wird, installiert werden. Hierdurch werden im DAP entsprechende Slots bzw. Subslots bereitgestellt.

3.1.1 Implementierte Profilversionen

- Encoder Profile Version 4.2
- PROFIdrive Version V4.2

3.1.2 Implementierte und optionale Features

ACHTUNG

Die Funktionsnutzung verschiedener Features ist abhängig vom verwendeten IO-Controller bzw. anderen IO-Devices innerhalb eines PROFINET-Netzwerkes. Sofern die Features im jeweiligen System unterstützt werden, kann es zusätzlich erforderlich sein die betreffende Funktion in der Steuerung explizit zu aktivieren bzw. zu konfigurieren.

ACHTUNG

Die Übersicht gibt Aufschluss, ob das Feature im Drehgeber implementiert ist. Dies bedeutet jedoch nicht, dass das Feature in jedem PROFINET-Gerät in der gleichen Art und Weise implementiert ist.

Optionale PROFINET Features	Beschreibung
Discovery and basic Configuration Protocol (DCP)	Das Discovery and basic Configuration Protocol dient zur Vergabe eines symbolischen Gerätenamens.
Network Redundancy with Media Redundancy Protocol (MRP)	Media Redundancy Protocol bietet Netzwerkringredundanz für PROFINET IO Echtzeitnetzwerke.
System Redundancy	Ermöglicht einen Primär- und Backup-Controller für redundante Anwendungen mit PROFINET.
Supervisor Access	Ermöglicht die Übernahme eines IO-Geräts durch einen IO-Supervisor zur Überprüfung von Eingaben, Ausgängen und Gerätefunktionen.
Extended Device Information (Identification & Maintenance Records 1 3)	Erweiterte Geräteidentifikation (Standortbezeichnung, Einbaudatum, etc.)
Simple Network Management Protocol (SNMP)	Ermöglicht das Auslesen von einfachen Netzwerkverwaltungsprotokollen und Topologie Informationen.
Simple Device Replacement	Ermöglicht einem IO-Controller, bei Geräteausfällen und Austausch automatisch ein ersetztes IO-Gerät zu benennen.

SIKO WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 9 von 45

Optionale PROFINET Features	Beschreibung
Fast Start Up (FSU)	Schnelles Hochstarten des Gerätes nach Power- On für spezifische Anwendungen (z. B. Werkzeugwechsler).
Isochronous Real Time (IRT)	Isochrone Echtzeit ermöglicht synchrone Kommunikation mit Bandbreitenreservierung und Scheduling bis zu 250 µs mit <1 µs Jitter für Motion-Control-Anwendungen.
Application and Device Profiles	Spezielle Anwendungs-/Geräte-Profile für bestimmte Anwendungen (z.B. Sicherheit, Energie, Antriebe) oder Gerätedatensätze für bestimmte Gerätetypen (z.B. Encoder).
Manufacturer Specific Alarms	Herstellerspezifische PROFINET-Diagnosealarme (z.B. redundanter Netzteilfehler, herstellerspezifischer Fehlercode).

Tabelle 2: Optionale PROFINET Features

3.1.2.1 FSU - Fast Start Up

Mit einem Fast Start Up (FSU) ist ein optimierter Systemhochlauf definiert, um ab dem zweiten Hochlauf wesentlich schneller in den Datenaustausch zu gelangen, da schon viele Parameter in den Feldgeräten bereits gespeichert sind. Dieser optionale Weg kann parallel zum Standardhochlauf (der nach "Power-On", beim ersten Hochlauf oder "Reset" weiterhin seine Anwendung findet) eingesetzt werden. Die Kommunikationsparameter müssen dazu permanent gespeichert werden können.

Für gewöhnlich dauert der Hochlauf nach Zuschalten der Betriebsspannung 6-7 Sekunden. Mit aktivierter FSU ist der Drehgeber schon in ca. 2 Sekunden betriebsbereit. Dies ist an der blinkenden LED Link/Activity des verwendeten Ports erkennbar (siehe Kapitel 2.4).

3.1.2.2 LLDP - Link Layer Discovery Protocol

	ACHTUNG	Für die Netzwerkinfrastruktur bei CC-A können handelsübliche Switches					
		verwendet werden, die die Nachbarschaftserkennung mit Link Layer					
Discovery Protokoll (LLDP) nach IEEE 802.1AB unterstützen (Meldu							
		dem speziellen Ethertype dürfen vom Switch nicht weitergeleitet werden).					

ACHTUNG	Damit der Gerätetausch ohne Wechselmedium in Form von Plug & Play
	funktioniert, muss gewährleistet sein, dass das neue PROFINET-Gerät keinen
	Gerätenamen besitzt. Dies ist der Auslieferungszustand. Aktuelle
	Steuerungen unterstützen zusätzlich auch das Überschreiben bestehender
	Gerätenamen. Dies muss dann steuerungsseitig eingestellt werden. Ebenso
	kann ein nahtloser Gerätetausch ohne zusätzlich Parametrierung nur
	gewährleistet werden, wenn das alte PROFINET-Gerät mit Telegrammen
	projektiert wurde, die ebenfalls im neuen Gerät unterstützt werden.

LLDP ist ein herstellerunabhängiges Layer 2 Protokoll. Ein Gerät, welches LLDP unterstützt, schickt im Takt weniger Sekunden eine Nachricht an seine Nachbargeräte, um sich selbst zu identifizieren und netzwerkbezogene Informationen zu übermitteln. Diese Informationen geben Aufschluss über das Gerät und seine Art der Einbindung in die jeweilige Topologie (Port-Beschreibung, IP-Adresse, Gerätename, etc.).

Die LLDP Funktion ist standardmäßig immer aktiv, kann aber auch deaktiviert werden. Während des Hochlaufs im Netzwerk tauschen alle Geräte diese Informationen untereinander aus. Damit kann die aktuelle Topologie mit einem Engineering Tool direkt eingesehen bzw. rekonstruiert werden. Der Hauptvorteil liegt im vereinfachten Austausch defekter Geräte. Dem neuen Gerät wird automatisch ein LLDP ALIAS Name zugewiesen. Damit kann es sich automatisch, ohne den Gebrauch von Software, im Netzwerk anmelden.

3.1.2.3 MRP - Media Redundancy Protocol

ACHTUNG

Um einen logischen Ring zu bilden, müssen alle Geräte im gleichen Subnet sein. Dies betrifft auch den PC, über den die Steuerung parametriert wird. Die Funktion bedingt entsprechende Voraussetzungen und Geräteeinstellungen seitens der Steuerung.

PROFINET bietet die Möglichkeit eine Ring-Topologie aufzubauen. Das MRP bietet die Möglichkeit, die Daten über beide Richtungen des logischen Rings zur Steuerung zu transportieren. Dies geschieht allerdings erst im Bedarfsfall (typischerweise bei Kabelbruch) d. h. sobald ein Übertragungsweg nicht mehr funktioniert, wird der Zweite eröffnet. Die Umstellung dauert in der Regel ein paar Millisekunden. Meist wird das MRP in Verbindung mit RT genutzt, kann aber auch mit IRT genutzt werden.

3.1.2.4 Isochronous Mode IRT

ACHTUNG

Zu diesem Zweck müssen in einem solchen Taktsystem alle beteiligten Geräte untereinander direkt, ohne Übergang durch nicht synchrone Geräte, verbunden sein.

ACHTUNG

MRP kann nicht im Zusammenhang mit IRT verwendet werden. Um dies zu erreichen, müssen die Geräte im Ring MRPD unterstützen.

Sollten kleinste Zykluszeiten der jeweiligen Applikation nicht ausreichen kann zusätzlich der isochrone Modus aktiviert werden. Hierzu synchronisiert ein Clock-Master alle lokalen Taktgeneratoren der Geräte in einem Taktsystem (IRT Domain) auf denselben Takt mit der Hilfe von Synchronisationstelegrammen.

Dieser stellt sicher, dass die Daten zu jedem Zeitpunkt deterministisch sind. Der minimale Taktzyklus beträgt 250 μs. Die Zykluszeit kann ein beliebiges Vielfaches der minimalen Zykluszeit sein. Sämtliche Übertragungszeiten zu allen Teilnehmern im Netzwerk sind im Voraus kalkuliert. Kollisionen und Latenzen durch Jitter werden durch netzwerkseitige Priorisierungsmechanismen ausgeschlossen. Damit kann der Geberwert einem genauen Zeitpunkt (±1 µs) zugeordnet werden.

3.1.3 Azyklische Kommunikation

Geberparameter werden beim Konfigurieren des Drehgebers festgelegt. Daneben kennen PROFIdrive-Geräte Parameter, in denen weitere benötigte Daten gehalten werden. Diese Parameterdaten werden zeitlich parallel und zusätzlich zur zyklischen Prozessdatenübertragung abgewickelt. Sie werden normalerweise während der Laufzeit eines Automationsprogramms nicht zyklisch übertragen, sondern nur bei Bedarf "azyklisch".

Der Zugriff auf die azyklischen Parameterdaten wurde nach dem PROFIdrive-Antriebsprofil im Drehgeber implementiert.

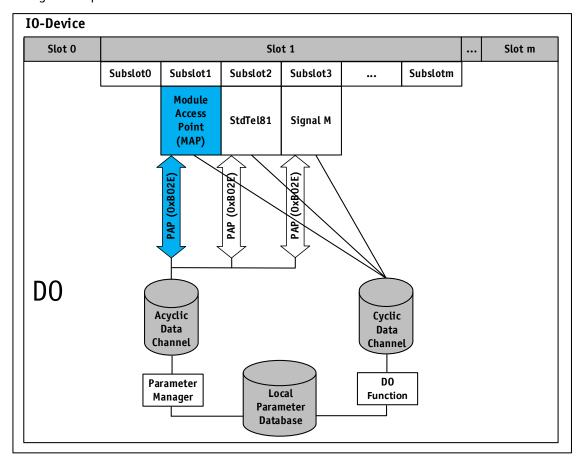


Abb. 2: Azyklische Kommunikation

3.2 Standardtelegramme für zyklische Prozessdaten

ACHTUNG

Preset nur im Stillstand einstellen. Wenn der Preset-Wert größer als die Gesamtauflösung ist, wird die Warnung "Preset-Wert außerhalb des Bereichs" gesetzt.

Für die zyklische Prozessdaten sind die Standardtelegramme 81, 82, 83, 84, 86, 88 implementiert.

Standardtelegramme 81 bis 84 werden typischerweise verwendet, wenn der Geber zusammen mit einem Motion Control-System mit PROFIdrive-Schnittstelle verwendet wird. Telegramme 81 bis 84 bieten eine Standard-PROFIdrive-Sensorschnittstelle, die der Sensorschnittstelle eines Standardantriebs entspricht. Dennoch können die Telegramme 81 bis 84 auch mit einer speicherprogrammierbaren Steuerung verwendet werden, wenn die Überwachung von Lebenszeichen oder Fehlercodes über eine zyklische Schnittstelle erforderlich ist.

Mit den Standardtelegramme 86 und 88 ist es möglich, während der laufenden Anwendung, einen benutzerdefinierten Preset-Wert entsprechend einzustellen.

In den verschiedenen Telegrammen werden verschiedene Signale verarbeitet.

Abkürzung	Bedeutung	Länge (Bit)	Vorzeichen
G1_XIST1	Position 1	32	Nein
G1_XIST2	Position 2	32	Nein
G1_XIST3	Position 3	64	Nein
NIST_A	Geschwindigkeit A	16	Ja
NIST_B	Geschwindigkeit B	32	Ja
G1_STW	Sensor 1 Steuerwort	16	Nein
G1_ZSW	Sensor 1 Zustandswort	16	Nein
STW2_ENC	Encoder Steuerwort 2	16	Nein
ZSW2_ENC	Encoder Zustandswort 2	16	Nein
G1_XIST_PRESET_B	Sensor-Preset-Signal G1_XIST1	32	Nein
G1_XIST_PRESET_C	Sensor-Preset-Signal G1_XIST3	64	Nein

Tabelle 3: Zyklische Signale Standardtelegramme

3.2.1 Aufbau der Standardtelegramme

Standard-Datenformat gemäß Encoder-Profil V4.2. Die Byte-Reihenfolge entspricht dem Big-Endian-Format. Die Bitwertigkeit der Positions- und Geschwindigkeits-Istwerte ist rechtsbündig (Shift-Faktor 0).

Eingabedaten (Master ⇒ Slave); Ausgabedaten (Slave ⇒ Master)

3.2.1.1 Standardtelegramm 81

ACHTUNG	Anders als beim Standardtelegramm 86 wird der Preset-Wert beim				
	Standardtelegramm 81 zyklisch übertragen. Für den Wert selbst bedeutet				
dies, dass dieser nicht im Telegramm übertragen wird, sondern auf eine					
Variable zurückgreift. Diese Variable hat die Bezeichnung B02Eh und ka					
	den Allgemeinen Einstellungen des Submoduls definiert werden				
	(siehe Kapitel 3.3.4).				

• Standard-PROFIdrive-Geberkanal

Aufbau Eingabedaten

PZD/Wort	1	2
Sollwert	STW2_ENC	G1_STW

Aufbau Ausgabedaten

PZD/Wort	1	2	3	4	5	6
Istwert	ZSW2_ENC	G1_ZSW	G1_XIST1		G1_XIST2	

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 13 von 45

3.2.1.2 Standardtelegramm 82

- Standard-PROFIdrive-Geberkanal
- Geschwindigkeit A

Aufbau Eingabedaten

PZD/Wort	1	2
Sollwert	STW2_ENC	G1_STW

Aufbau Ausgabedaten

PZD/Wort	1	2	3	4	5	6	7
Istwert	ZSW2_ENC	G1_ZSW	G1_XIST1		G1_XIST	2	NIST_A

3.2.1.3 Standardtelegramm 83

- Standard-PROFIdrive-Geberkanal
- Geschwindigkeit B

Aufbau Eingabedaten

PZD/Wort	1	2
Sollwert	STW2_ENC	G1_STW

Aufbau Ausgabedaten

PZD/Wort	1	2	3	4	5	6	7	8
Istwert	ZSW2_ENC	G1_ZSW	G1_XIS		G1_XIS	12	NIST_B	

3.2.1.4 Standardtelegramm 84

- PROFIdrive-Geberkanal mit Position 3
- Geschwindigkeit B

Aufbau Eingabedaten

PZD/Wort	1	2
Sollwert	STW2_ENC	G1_STW

Aufbau Ausgabedaten

PZD/Wort	1	2	3	4	5	6	7	8	9	10
Istwert	ZSW2_ENC	G1_ZSW	G1_X	(IST3			G1_XI	ST2	NIST_	_B

3.2.1.5 Standardtelegramm 86

- Position 2
- Geschwindigkeit B

Aufbau Eingabedaten

PZD/Wort	1	2
Sollwert	G1_XIST_PRESET_B	

Aufbau Ausgabedaten

PZD/Wort	1	2	3	4
Istwert	G1_XIST2		NIST_B	

3.2.1.6 Standardtelegramm 88

- Position 3
- Geschwindigkeit B

Aufbau Eingabedaten

PZD/Wort	1	2
Sollwert	G1_XIST_PRESET_C	

Aufbau Ausgabedaten

PZD/Wort	1	2	3	4	5	6
Istwert	G1_XIST3				NIST_B	

3.2.2 Telegrammdaten

3.2.2.1 Positionswert G1_XIST1 (Slave ⇒ Master)

Bit	Beschreibung
Bit 0 31	Aktueller absoluter Positionswert mit max. 32 Bit. Wird durch Skalierung und Preset beeinflusst. Die Berücksichtigung des Preset kann durch "Disable G1_XIST1 Preset Control" deaktiviert werden (siehe Kapitel 3.3.1.3). Per Default ist nur G1_XIST1 aktiv und zeigt die skalierte Position an, die durch TMR + MUR eingestellt ist (siehe Kapitel 3.3.1.6 bzw. Kapitel 3.3.1.5).

Tabelle 4: Positionswert G1_XIST1

3.2.2.2 Positionswert G1_XIST2 (Slave ⇒ Master)

Bit	Beschreibung
Bit 0 31	Aktueller absoluter Positionswert mit max. 32 Bit. Wird durch Skalierung und Preset beeinflusst. G1_XIST2 kann durch STW2_ENC.13 aktiviert werden. G1_XIST2 zeigt dann die gleiche Position wie G1_XIST1. Im Fehlerfall werden entsprechende Fehlercodes ausgegeben (siehe Kapitel 3.4.3.4).

Tabelle 5: Positionswert G1_XIST2

3.2.2.3 Positionswert G1_XIST3 (Slave ⇒ Master)

Bit	Beschreibung
Bit 0 63	Aktueller absoluter Positionswert mit max. 64 Bit. Wird durch Skalierung und Preset beeinflusst.

Tabelle 6: Positionswert G1_XIST3

3.2.2.4 Geschwindigkeitswert NIST_A (Slave ⇒ Master)

Bit	Beschreibung
Bit 0 15	Aktueller Geschwindigkeitswert mit max. 15 Bit. Der Wert wird in der für die Geschwindigkeitsmessung parametrierten Einheit ausgegeben (siehe Kapitel $3.3.1.7$). Bit 15 enthält das Vorzeichen: $0 = + / 1 = -$

Tabelle 7: Geschwindigkeitswert NIST_A

3.2.2.5 Geschwindigkeitswert NIST_B (Slave ⇒ Master)

Bit	Beschreibung
Bit 0 31	Aktueller Geschwindigkeitswert mit max. 31 Bit. Der Wert wird in der für die Geschwindigkeitsmessung parametrierten Einheit ausgegeben (siehe Kapitel $3.3.1.7$). Bit 31 enthält das Vorzeichen: $0 = + / 1 = -$

Tabelle 8: Geschwindigkeitswert NIST_B

3.2.2.6 Steuerwort: G1_STW (Master ⇒ Slave)

Bit	Beschreibung
Bit 0 10	Reserviert, immer 0
Bit 11	Preset Mode
	0 = Absoluter Preset (neue Position = Preset-Wert)
	1 = Relativer Preset (neue Position = alte Position + Preset-Wert)
Bit 12	Positive Flanke löst ein Preset-Vorgang aus.
Bit 13	Request Absolute Value Cyclically
	0 = Deaktiviert. G1_XIST2 wird nicht übertragen
	1 = Aktiviert. G1_XIST2 wird übertragen
Bit 14	Activate Parking Sensor
	0 = Deaktiviert
	1 = Die Steuerung setzt den Drehgeber inaktiv("Parken").
	In diesem Fall nimmt G1-ZSW.14 den Wert 1 an.
	Die aktuellen Positionsdaten werden eingefroren.
	Es werden keine neuen Fehler ausgegeben.

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 16 von 45

Bit	Beschreibung
Bit 15	Sensor Error Acknowledge 0 = Übertragung Sensor Fehler deaktiviert
	1 = Übertragung Sensor Fehler aktiviert

Tabelle 9: Steuerwort G1_STW

3.2.2.7 Steuerwort: STW2_ENC (Master ⇒ Slave)

Bit	Beschreibung
Bit 0	Preset auslösen Positive Flanke setzt den voreingestellten Wert aus G1_XIST_PRESET_x als neuen Positions-Istwert. Der Positions-Istwert wird durch einen berechneten Offsetwert korrigiert. Der Offset wird intern gespeichert und über ZSW2_ENC.0 bestätigt.
Bit 1 6	Reserviert, immer 0
Bit 7	Fehlerbestätigung Positive Flanke bestätigt aktuelle Fehler im Fehlerspeicher.
Bit 8, 9	Reserviert, immer 0
Bit 10	Steuerung durch SPS 0 = Keine Steuerung durch SPS. Daten sind nicht gültig, ausgenommen der Sign-Of-Life. G1_XIST2 ist deaktiviert.
	1 = Steuerung durch SPS. Steuerung über das Interface, E/A Daten sind gültig.
Bit 11	Reserviert, immer 0
Bit 12 15	Master Sign-Of-Life Wird nur benötigt, wenn der isochrone Mode aktiviert ist. Der Drehgeber erwartet eine bitweise Inkrementierung der Bits. Sobald das Master Sign-Of-Life einen Wert ungleich 0 enthält, beginnt der Drehgeber das Encoder Sign-Of-Life auszugeben. Sobald im Master Sign-Of-Life eine Abweichung zur erwarteten Zählfolge festgestellt wird, wird der Fehlerzähler erhöht und ggf. der Fehler OFO2h in G1_XIST2 ausgegeben.

Tabelle 10: Steuerwort STW2_ENC

3.2.2.8 Zustandswort: $G1_ZSW$ (Slave \Rightarrow Master)

ACHTUNG	Wenn sich nach der Beseitigung der Fehlerursache die Störung nicht
	quittieren lässt und auch nach einem Power-On-Reset die Störung immer
	noch anliegt, ist eine Überprüfung des Drehgebers im Werk erforderlich.

Bit	Beschreibung
Bit 0 10	Reserviert, immer 0

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 17 von 45

Bit	Beschreibung
Bit 11	Requirement Of Error Acknowledgement Detected Wechselt auf 1, wenn ein Fehler vorliegt. Weitere Ursachen: Controller setzt oder löscht G1_STW.15 Sensor Error Acknowledge. Sensor Error G1_ZSW.15 liegt vor und Fehlercode in G1_XIST2 bzw. Controller löscht G1_ZSW.15 und G1_XIST2 enthält wieder einen Positionswert.
Bit 12	Set/Shift Of Home Position Executed Drehgeber setzt diese Bit nach Ausführung eines Preset-Vorgangs auf 1, bis das entsprechende Bit in G1_STW wieder vom Controller gelöscht wird.
Bit 13	Transmit Absolute Value Cyclically Ist 1, wenn eine gültige Position in G1_XIST2 vorliegt. Ist 0, wenn G1_ZSW.14 bzw. G1_ZSW.15 = 1.
Bit 14	Parking Sensor Active Wechselt auf 1, sobald G1_STW.14 gesetzt wird. Die gemeldete Position wird in diesem Falle fixiert.
Bit 15	Sensor Error Wechselt auf 1, falls ein Hardware-Fehler erkannt wird. G1_XIST2 enthält dann den Fehlercode und G1_ZSW.13 wird auf 0 gesetzt. Dieses Fehlerbit muss über G1_STW.15 quittiert werden.

Tabelle 11: Zustandswort G1_ZSW

3.2.2.9 Zustandswort: ZSW2_ENC (Slave ⇒ Master)

ACHTUNG	Wenn sich nach der Beseitigung der Fehlerursache die Störung nicht
	quittieren lässt und auch nach einem Power-On-Reset die Störung immer
	noch anliegt, ist eine Überprüfung des Drehgebers im Werk erforderlich.

Bit	Beschreibung
Bit 0	Presetvorgang 0 = Der Offsetwert des letzten Presetvorgangs ist gespeichert. Der Drehgeber ist bereit für einen erneuten Presetvorgang.
	$1 = Der \ voreingestellte \ Presetwert \ wurde als neuen Positions-Istwert gesetzt. Das wird mit dem Wechsel des Bits von 0 \Rightarrow 1 bestätigt. Der Wert ist intern gespeichert worden.$
Bit 1	Gültigkeit G1_XIST x 0 = Der Positionswert in G1_XIST x ist ungültig.
	1 = Der Positionswert in G1_XIST x ist gültig.
Bit 2	Gültigkeit G1_NIST x 0 = Der Geschwindigkeitswert in NIST x ist ungültig.
	1 = Der Geschwindigkeitswert in NIST x ist gültig.
Bit 3	Drehgeber Fehler 0 = Der Drehgeber hat keinen Fehler erkannt.
	1 = Der Drehgeber hat einen oder mehrere Fehler erkannt.
Bit 4 6	Reserviert, immer 0

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 18 von 45

Bit	Beschreibung
Bit 7	Drehgeber Warnung
	0 = Der Drehgeber hat keine Warnmeldungen verfügbar.
	1 = Es stehen Warnmeldungen an im Drehgeber.
Bit 8	Reserviert, immer 0
Bit 9	Verbindung Status
	0 = Keine Verbindung mit der SPS.
	1 = Verbindung wurde mit der SPS aufgebaut.
Bit 10, 11	Reserviert, immer 0
Bit 12 15	Drehgeber Sign-Of-Life
	Sobald die Steuerung das Master Sign-Of-Life schickt, beginnt der Drehgeber
	seinerseits das Lebenszeichen zu schicken. Dies ist ein bitweise
	inkrementiertes Signal mit den Werten 0 15.
	Der Ausgangswert ist 0.

Tabelle 12: Zustandswort ZSW2_ENC

3.2.2.10 Preset-Signal: G1_XIST_PRESET_B und Trigger Bit (Master ⇒ Slave)

Bit	Beschreibung
Bit 0 30	Preset-Wert (ohne Bit 31) für G1_XIST1
Bit 31	Preset Steuerbit 0 = Preset-Modus nicht aktiv. Dieses Bit wird als "Preset-Steuerung" für Standardtelegramm 86 verwendet.
	1 = Preset aktivieren. Der Preset-Wert wird als aktueller Positionswert übernommen, der Offset-Wert berechnet und nullspannungssicher abgespeichert.

3.2.2.11 Preset-Signal: G1_XIST_PRESET_C und Trigger Bit (Master ⇒ Slave)

Bit	Beschreibung
Bit 0 62	Preset-Wert (ohne Bit 63) für G1_XIST3
Bit 63	Positive Flanke löst die Preset-Wert Übernahme als aktueller Positionswert aus.

3.3 Konfigurationsparameter

3.3.1 **Generelle Modul Parameter**

Der Drehgeber verfügt über verschiedene Parameter, die in jedem Telegramm gleichermaßen eingestellt werden können.

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 19 von 45

3.3.1.1 Code Sequence Counter Clockwise

Beeinflusst das Zählverhalten abhängig von der Drehrichtung. Beim Blick auf die Wellenseite des Drehgebers.

CW (default)	Die Drehgeber-Position erhöht sich bei Drehung der Welle im Uhrzeigersinn.
CCW	Die Drehgeber-Position erhöht sich bei Drehung der Welle entgegen dem Uhrzeigersinn.

3.3.1.2 CLASS 4 Functionality

Beeinflusst die Berücksichtigung der Skalierung, Preset und Drehrichtungseinstellung in sämtlichen Telegrammen bzw. in den Positionsdaten G1_XIST1, G1_XIST2 und G1_XIST3.

Deaktiviert	Applikationsklasse 3 - Skalierung, Preset und Drehrichtungseinstellung deaktiviert.
Aktiviert (default)	Applikationsklasse 4 - Skalierung, Preset und Drehrichtungseinstellung aktiviert.

3.3.1.3 Disable G1_XIST1 Preset Control

ACHTUNG	Dieser Parameter steuert die Berücksichtigung des Presets bei G1_XIST1. Die
	Durchführung eines Presets auf G1_XIST2 und G1_XIST3 wird immer
	berücksichtigt.

ACHTUNG	Ist G1_XIST1 deaktiviert und der Positionswert steigt über den Maximalwert		
oder fällt unter 0, gibt das Gerät den maximalen Positionswert inne			
	skalierten Gesamtbereichs für den Positionswert G1_XIST2 aus.		
Der Positionswert G1-XIST1 ist nicht auf den skalierten Gesamtbereich			
	begrenzt. Für den Positionswert G1-XIST1 gibt das Gerät weiterhin einen		
	skalierten Positionswert innerhalb des Gesamtmessbereichs aus, z. B. max.		
	33554432 Position bei 25 Bit.		

Beeinflusst die Berücksichtigung des Preset (B02Eh).

Deaktiviert (default)	G1_XIST1 zeigt die aktuelle Position an, unter Berücksichtigung des Presets (G1_XIST1 = G1_XIST2, jedoch ohne evtl. Fehlercode).
Aktiviert	G1_XIST1 zeigt die aktuelle Position an, ohne Berücksichtigung des Presets.

3.3.1.4 Scaling Function Control

ACHTUNG Entscheidend ist, ob das Teilungsverhältnis k eine ganze Zahl ergibt. No		
	mit einem binären Teilungsverhältnis würde der Überlauf von TMR auf 0	
	gemeinsam mit dem Überlauf des physikalischen Multiturn auf 0 stattfinden!	

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 20 von 45

Beeinflusst die Berücksichtigung der Skalierung.

Deaktiviert	Die Position wird in der maximal möglichen Gesamtauflösung (ST+MT = TMR) des jeweils verwendeten Telegramms dargestellt.
Aktiviert (default)	Die Drehgeber-Position wird skaliert dargestellt (gemäß MUR und TMR).

Sind die Skalierungsparameter freigeschaltet (Encoder Class 4 Funktionalität = Aktiviert und Skalierungsfunktion = Aktiviert), kann die physikalische Auflösung des Mess-Systems verändert werden. Durch die USF sind nicht nur binäre, sondern auch dezimale Teilungsverhältnisse bei Skalierungen möglich, die je nach Applikationen benötigt werden.

Würde der Drehgeber mittels MUR und TMR auf ein dezimales Teilungsverhältnis, relativ zur max. physikalischen Position (TMRph), parametriert werden, ergebe sich ein Positionsfehler nach Erreichen der maximalen Position. Nach der max. physikalischen MT-Umdrehungszahl (NDRph) käme es zu einem Überlauf, da der physikalische Multiturnwert inmitten der Berechnung von TMR auf 0 wechselt.

Das Teilungsverhältnis k kann anhand der Formel k = TMRph / TMR errechnet werden.

Beispiel USF generell:

Bei einem Drehgeber mit MURph = 16 bit und NDRph = 12 bit ergeben sich TMRph = 28 bitphysikalische Gesamtauflösung.

- TMR = 67108864 $K = 2^2 / 67108864 = 4$ Binäres Teilungsverhältnis \Rightarrow
- TMR = 65000000 $K = 2^28 / 65000000 = 4.1297$ \Rightarrow Dezimales Teilungsverhältnis

Einen hohen Nutzen hat die USF vor allem bei solchen Anwendungen, die ein spezielles Teilungs- oder Übersetzungsverhältnis erforderlich machen.

3.3.1.5 MUR - Measuring Units per Revolution

Stellt die Anzahl unterschiedlicher Positionen pro Umdrehung ein (idealerweise eine 2er-Potenz). Dies hängt von der Auflösung des jeweiligen Gerätes und der zulässigen max. Bit-Anzahl des verwendeten Telegramms ab.

Standardtelegramm	MUR max. Bits von Gerät	TMR max. Bits von Gerät	Bits max. zulässig nach Telegramm
81, 82, 83, 84	16	32	32
86, 88	19	43	64

Wertebereich

Wert	
1 65535	
8192 (default)	

3.3.1.6 TMR – Total Measuring Range

ACHTUNG

MUR > TMR auch möglich, wobei der MUR Wert für die Singleturn Auflösung entscheidend ist. Ab Werk ist bei MT Encodern der TMR Wert 8192 gesetzt, was bei MUR 8192 einen ST Encoder darstellt.

Gesamt-Anzahl unterschiedlich zu den meldenden Positionen, über alle zu unterscheidenden Umdrehungen. Dabei gilt:

- TMR / MUR höchster einzustellender Wert = max. Multiturnwert.
- TMR / MUR = 1 \Rightarrow Singleturn

Beispiel:

MUR = 8192

TMR = 65536

Nach acht (8) Umdrehungen ist TMR erreicht bzw. die Positionen 0 bis 65535 wiederholen sich alle acht (8) Umdrehungen.

Wertebereich

Wert
4 4294967295
8192 (default)

3.3.1.7 Velocity Measuring Unit

ACHTUNG	Die Berechnung findet generell einmal pro Sekunde statt.
---------	--

ACHTUNG	Der Wertbereich reicht von -200 % bis zu 200 %. Passen Sie den Sollwert an		
die jeweilige Anwendung an, um den Wertbereich optimal zu nutzen.			
	Wenn der erwartete Geschwindigkeitswert im Signal NIST_x nicht erscheint,		
	prüfen Sie die gewählte Normierung bzw. Skalierung für NIST.		

Diese Einstellung beeinflusst die Einheit der berechneten Geschwindigkeit.

0	Schritte (Positionen) / Sekunde		
1	Schritte (Positionen) / 0.1 Sekunde		
2	Schritte (Positionen) / 0.01 Sekunde		
3 (default)	Umdrehungen / Minute (rpm)		
4	N2/N4 normalisiert Geschwindigkeitsnormierung (Skalierung) wie in PROFIdrive- Telegrammen verwendet. Der Geschwindigkeitsistwert in NIST ist ein Prozentsatz des Sollwertes.		

Dabei gilt:

- N2/N4 normalisiert [%]
- 100 % = Velocity Reference Value (Parameter 60000)
- MSB = 1 ist ein negatives Vorzeichen; MSB = 0 ist ein positives Vorzeichen

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 22 von 45

Funktionsbeschreibung

Beispiel:

Parameter 60000 = 4000 U/min

Aktuelle Geschwindigkeit = 2000 U/min, dies entspricht 50 % von 4000 U/min \Rightarrow NIST A ist 50 %

Aktuelle Geschwindigkeit = -6000 U/min, dies entspricht -150 % von 4000 U/min \Rightarrow NIST A ist -150 %

3.3.1.8 **PRESET Wert**

Bei Auslösung des Preset-Vorgangs über Standardtelegramm 86 bzw. 88 wird der Preset-Wert direkt über die zyklischen Eingangsdaten festgelegt, übermittelt und ausgelöst. D. h. bei der Nutzung dieser Telegramme kann kein Preset via B02Eh genutzt werden.

Legt eine absolute oder relative Position fest, auf die bei Ausführung eines Preset zurückgegriffen werden kann, z. B. durch das Standardtelegramm 81.

Zulässiger Wertebereich:

- Absoluter Preset: 0 ... ("TMR"-1)
- Relativer Preset: 0 ... ±("TMR"-1)

Beim Aufbau der PROFINET-Verbindung wird der hier angegebene Preset-Wert automatisch von der Steuerung eingestellt. Bei Bedarf kann der Preset-Wert auch später noch verändert werden.

3.3.2 Azyklische Parameterdaten

Die Reihenfolge muss eingehalten werden, egal ob lesender oder schreibender Zugriff.

Mit Hilfe der azyklischen Parameterdaten können Informationen vom Drehgeber gelesen sowie auch Parameter in den Drehgeber geschrieben werden.

Grundsätzlich erfolgt das Schreiben/Lesen von Parameterdaten im PROFIdrive Profil über den so genannten "Base Mode Parameter Access". Dieser Dienst wird von PROFIdrive definiert und bereitgestellt. Das PROFIdrive Profil legt fest, wie genau dieser grundlegende Mechanismus genutzt wird bzw. wie der PROFINET-Master auf Datenblöcke im PROFINET-Slave lesend oder schreibend zugreifen kann.

Ein Parameterzugriff besteht dabei immer aus:

- Write Request ("Datensatz Schreiben")
- Read Request ("Datensatz Lesen")

Mit einem "Datensatz Schreiben" wird der Parameterauftrag (Anforderung) übermittelt (z. B. einen Parameter x lesen). Mit einem "Datensatz Lesen", wird die Antwort auf diesen Parameterauftrag abgeholt (Wert des Parameters x).

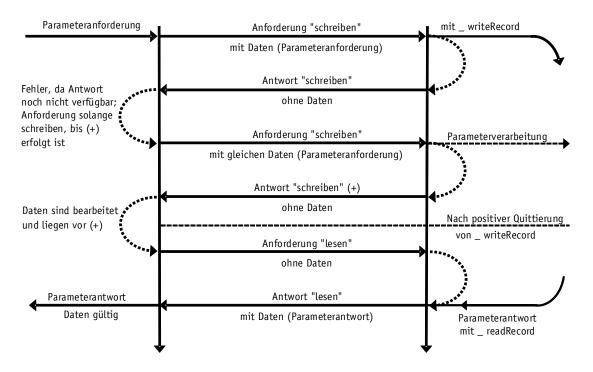


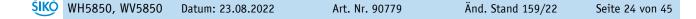
Abb. 3: Azyklische Parameterdaten Lesen und Schreiben

PROFINET stellt je nach Bereich verschiedene Zugriffsmöglichkeiten zur Verfügung.

Record Data Object	Parameterzugriff-Service	Slot	Subslot
AFF0h	I&M 0 Parameter	01h	01h
AFF1h	I&M 1 Parameter		
AFF2h	I&M 2 Parameter		
AFF3h	I&M 3 Parameter		
B02Eh	Base Mode Parameter Access	01h	01h
BF00h	Start-up Configuration	01h	01h

Tabelle 13: Record Data Objects

Sämtliche Encoder-Parameter sind über Referenzziffern, den sogenannten Parameter Numbers - PNU bzw. den Index sowie Subindex, referenziert. Der Zugriff hierauf erfolgt über Record Data Objects, die über PAP mit dem Parameter Manager kommunizieren.


Für die azyklische Kommunikation werden zum Teil von verschiedenen Steuerungssystemen Standard- bzw. Systemfunktionen zur Verfügung gestellt.

Beispiel:

Bei einer Siemens-SPS (S7) sind dies:

- SFB52 = RDREC (Read Record)
- SFB53 = WRREC (Write Record)

Die Funktionsblöcke implementieren den Base Mode Parameter Access (B02Eh).

3.3.2.1 Schreibzugriff

ACHTUNG

Ein "Datensatz Schreiben" ohne Daten dient dazu den Status von "Datensatz schreiben" mit Daten zu ermitteln, bis die positive Quittierung erfolgt. Eine erfolgreiche Beendigung von "Datensatz Schreiben" signalisiert nur die fehlerfreie Übertragung des Datensatzes über den Kommunikationsweg, aber nicht die fehlerfreie Ausführung des Vorgangs im Zielgerät. Dies wird durch die anschließende "Datensatz Lesen" Anforderung überprüft.

Zum Schreiben von einem Parameterwerten werden zunächst der Auftragsstruktur Daten (P-Request/Response Datensatz) übergeben, die dann per "Datensatz Schreiben" mit writeRecord übertragen werden. Durch wiederholtes "Datensatz Schreiben" (_writeRecord ohne Daten) kann der Status überprüft werden, bis eine positive Quittierung kommt. Mit einer "Datensatz Lesen" Anforderung (_readRecord) wird die Ausführung im Zielgerät abgefragt.

- "Write Request" durch den IO-Controller mit Parameternummer und die zu schreibenden Nutzdaten.
- "Write Response" vom IO-Device

Write Request vom IO- Controller

Slot			BYTE	01h
Subslot			BYTE	01h
Index			WORD	B02Eh
Data Length			BYTE	Individuell
Data	Request Header	Request Reference	BYTE	
		Request ID	BYTE	01h = "Read" 02h = "Write"
		Drive Object ID	BYTE	00h
		Number of Parameters	BYTE	01h
	Parameter Value	Attribute	BYTE	10h = "Wert"
		Number of Elements/Values	BYTE	
		Parameter Number	WORD	
		Subindex	WORD	
		Format / Data Type	BYTE	bei "Write Request"
		Number of values	BYTE	bei "Write Request"
		Values to write (if any)	BYTE	bei "Write Request"

Tabelle 14: Write Request vom IO- Controller

Write Response vom IO-Device

Slot	BYTE	01h
Subslot	BYTE	01h
Index	WORD	B02Eh
Data Length	BYTE	Individuell

Tabelle 15: Write Response vom IO-Device

3.3.2.2 Lesezugriff

Zum Lesen von Parameterwerten wird zunächst der Datenblock zusammengestellt, welcher Parameter gelesen werden soll. Dieser Datensatz wird über "Datensatz Schreiben" (_writeRecord) als Anforderung an den Drehgeber übertragen. Ein nachfolgendes "Datensatz Lesen" (_readRecord) als Anforderung liefert dann einmalig die angeforderten Werte zurück.

- "Write Request" durch den IO-Controller. Hier wird übertragen welche Parameter gelesen werden sollen.
- "Write Response" vom IO-Device.
- "Read Request" durch den IO-Controller.

Read Request vom IO-Controller

Slot	BYTE	Immer 01h
Subslot	BYTE	Immer 01h
Index	WORD	Immer B02Eh
Data Length	BYTE	Abhängig von Parameter

Tabelle 16: Read Request vom IO-Controller

Read Response vom IO-Device mit den angeforderten Nutzdaten.

Slot			ВҮТЕ
Subslot			ВҮТЕ
Index			WORD
Data Length			BYTE
Data	Response Header	Response Reference	BYTE
		Response ID	BYTE
		Drive Object ID	BYTE
		Number of Parameters	BYTE
	Parameter Value	Format / Data Type 02h = Integer8 03h = Integer16 04h = Integer32 05h = Unsigned8 06h = Unsigned16 07h = Unsigned32 08h = FloatingPoint 0Ah = OCTET STRING 41h = Byte 42h = WORD 43h = DOUBLE WORD 44h = Fehlermeldung	ВҮТЕ
		Number of values	ВҮТЕ
		Values	siehe Format

Tabelle 17: Read Response vom IO-Device

3.3.2.3 Beispiele zum Lesen und Schreiben eines Parameters

Die folgenden Beispiele zeigen die Werte zum Lesen oder Schreiben des Parameters 65000, der den Preset-Wert des Drehgebers enthält.

Request zum Lesen des Parameters

Data	Data Request Header	Request Reference	BYTE	01h
		Request ID	BYTE	01h
		Drive Object ID	BYTE	00h
		Number of Parameters	BYTE	01h
	Parameter Value	Attribute	BYTE	10h = "Wert"
		Number of Elements/Values	BYTE	00h
		Parameter Number	WORD	FDE8h = 65000
		Subindex	WORD	0000h

Tabelle 18: Beispiel Request Lesen eines Parameters

Response zum Lesen des Parameters

Data	Response Header	Request Reference	BYTE	01h
		Request ID	BYTE	01h
		Drive Object ID	BYTE	00h
		Number of Parameters	BYTE	01h
	Parameter Value	Format / Data Type	BYTE	43h
		Number of values		01h
		Values		00000064h = 100

Tabelle 19: Beispiel Response Lesen eines Parameters

Request zum Schreiben des Parameters

Data	Request Header	Request Reference	BYTE	01h
		Request ID	BYTE	02h
		Drive Object ID	BYTE	00h
		Number of Parameters	BYTE	01h
	Parameter Value	Attribute	BYTE	10h = "Wert"
		Number of Elements/Values	BYTE	00h
		Parameter Number	WORD	FDE8h = 65000
		Subindex	WORD	0000h
		Format / Data Type	BYTE	43h
		Number of values	BYTE	01h
		Values to write (if any)	BYTE	00000064h = 100

Tabelle 20: Beispiel Request Schreiben eines Parameters

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 27 von 45

Response zum Schreiben des Parameters

Data	Response Header	Request Reference	BYTE	01h
		Request ID	BYTE	02h
		Drive Object ID	BYTE	00h
		Number of Parameters	BYTE	01h

Tabelle 21: Beispiel Response Schreiben eines Parameters

3.3.3 **I&M Daten**

Die I&M Daten sind direkt im Gerät zu finden. Sie können in der Regel im jeweiligen Gerät im Inspektorfenster unter Eigenschaften/Allgemein/Kataloginformationen bzw. Eigenschaften/Allgemein/Identification & Maintenance ausgelesen bzw. angepasst werden.

Programmtechnisch erfolgt der Zugriff über einen Read Record mit dem Index AFFOh. Hier stehen die grundsätzlichen Geräteparameter in Bezug auf PROFINET und der Herstellerkennung.

	Daten	Datentyp	Inhalt
Block Header	Block Type	UINT16	0020h
	Block Length	UINT16	0038h
	Block Version High	UINT8	01h
	Block Version Low	UINT8	01h
I&M Block	Manufacturer-ID	UINT16	02EBh (SIKO GmbH)
	Order_ID	STRING	"Wx5850-xxxx"
	Serial Number	STRING	"0123456789"
	Hardware Revision	STRING	"6"
	Software Revision	STRING	"V1.0.4"
	Revision Counter	UINT16	0000h
	Profile-ID	UINT16	3D00h
	Profile Specific Type	UINT16	0001h
	I&M Version (major)	UINT8	01h
	I&M Version (minor)	UINT8	01h
	I&M Supported	UINT16	000Eh

Tabelle 22: I&M O Datenblock

Neben den standardmäßigen I&M O Daten, können weitere I&M-Daten hinterlegt werden. Diese gliedern sich wie folgt:

- I&M 1 (AFF1h) = Anlagenkennzeichen und Ortskennzeichen
- I&M 2 (AFF2h) = Einbaudatum
- I&M 3 (AFF3h) = Herstellerspezifische Zusatzinformation im Gerät

3.3.4 **Base Mode Parameter**

Der Zugriff auf die Encoder-Parameter erfolgt gemäß PROFIdrive Profil V4.2.

SIKO WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 28 von 45

3.4 Parameter

Parameter werden in PROFIdrive, Interface und Encoder Parameter eingeteilt.

Kapitel	ab Seite
PROFIdrive Parameter	29
Interface Parameter	34
Encoder Parameter	36

3.4.1 PROFIdrive Parameter

Kapitel	ab Seite
PNU 922: Telegram Selection	29
PNU 925: Number of Controller Sign-Of-Life Failures Tolerated	30
PNU 964: Drive Unit Identification	30
PNU 965: Profile Identification Number	31
PNU 974: Base Mode Parameter Access Service Identification	31
PNU 975: DO Identification	32
PNU 979: Sensor Format	32
PNU 980: Defined Parameters	33

3.4.1.1 PNU 922: Telegram Selection

Über diesen Parameter kann der parametrierte Telegrammtyp ausgelesen werden.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned8
Zugriff	Read
PNU	922

Wertebereich

Wert	Beschreibung
81 (default)	PROFIdrive Standardtelegramm 81
82	PROFIdrive Standardtelegramm 82
83	PROFIdrive Standardtelegramm 83
84	PROFIdrive Standardtelegramm 84
86	Standardtelegramm 86 mit 32 Bit Position + 32 Bit Geschwindigkeit
88	Standardtelegramm 88 mit 64 Bit Position + 32 Bit Geschwindigkeit

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 29 von 45

3.4.1.2 PNU 925: Number of Controller Sign-Of-Life Failures Tolerated

ACHTUNG	Das Schreiben des Parameters ist nur bei deaktivierten Master Life-Sign
	möglich.

Der Parameter liest oder schreibt die Anzahl der zu tolerierenden Fehler des "Sign-of-Life" des IO-Controllers.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned8
Zugriff	Read/Write
PNU	925

Wertebereich

Wert	Beschreibung
1 255	
255	Sign-of-Life Überwachung ist deaktiviert
1 (default)	

3.4.1.3 PNU 964: Drive Unit Identification

Über diesen Parameter kann ein Datensatz zur Identifikation des Drehgebers gelesen werden. Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned16
Zugriff	Read
PNU	964

Wertebereich

Subindex	Beschreibung
0	Hersteller-ID
1	Objekttyp (herstellerspezifisch)
2	Firmware Version z. B. 0064h = 100 entspricht V1.00
3	Firmware Datum (Jahr) z. B. 7E4h = 2020
4	Firmware Datum (Tag.Monat) z. B. 0067h = 103 entspricht 1.03
5	Anzahl Drive Objects

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 30 von 45

3.4.1.4 PNU 965: Profile Identification Number

Der Parameter liest die PROFIL-ID des Encoder-Profils sowie dessen parametrierte Version aus. Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Byte
Zugriff	Read
PNU	965

Wertebereich

Subindex	Beschreibung
0	Profil-ID: 3Dh verkürzt
1	1Fh = 31 entspricht V3.1 2Ah = 42 entspricht V4.2

3.4.1.5 PNU 974: Base Mode Parameter Access Service Identification

Dieser Parameter liest drei Eigenschaften des Parameter-Kanals aus:

- Max. Datenlänge.
- Fähigkeit für Multi-Parameter-Access.
- Max. Bearbeitungszeit für einen Zugriff als Anhaltspunkt für ein kundenseitiges Timeout.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned8
Zugriff	Read
PNU	974

Wertebereich

Subindex	Beschreibung		
0	Max. Datenlänge (240Byte = F0h)		
1	Max. Anzahl Parameter-Anfragen pro Multi-Parameter-Anfrage		
2	Max. Zugriffsbearbeitungszeit		

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 31 von 45

3.4.1.6 PNU 975: DO Identification

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned16
Zugriff	Read
PNU	975

Wertebereich

Subindex	Beschreibung			
0	Hersteller-ID			
1	Objekttyp (herstellerspezifisch)			
2	Firmware Version z. B. 0064h = 100 entspricht V1.00			
3	Firmware Datum (Jahr) z. B. 7E4h = 2020			
4	Firmware Datum (Tag.Monat) z. B. 0067h = 103 entspricht 1.03			
5	PROFIdrive Type Class z. B. 0005h = 5 entspricht Encoder			
6	PROFIdrive DO Subclass 1			
7	Drive Object ID			

3.4.1.7 PNU 979: Sensor Format

Dieser Parameter liest die eingestellten Benutzerparameter des Drehgebers.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned32
Zugriff	Read
PNU	979

Wertebereich

Subindex	Beschreibung		
0	Header Info		
1	Basisgeber (G1) Type, wenn 979[2] bis 979[5] gültig; sonst 0x00000000.		
2	Sensorauflösung		
3	Shift-Faktor im Telegrammteil G1_XIST1		
4	Shift-Faktor für den Absolutwert in G1_XIST2		
5	Determinierbare Umdrehungen		
6	Reserviert		

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 32 von 45

Subindex	Beschreibung
7	Reserviert
8	Reserviert
9	Reserviert
10	Reserviert

3.4.1.8 PNU 980: Defined Parameters

Dieser Parameter liest alle unterstützen Parameternummern aus.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned16		
Zugriff	Read		
PNU	980	Subindex	0

Wertebereich

Subindex	Beschreibung
0	922
1	925
2	964
3	965
4	974
5	975
6	978
7	979
8	61000
9	61001
10	61002
11	61003
12	61004
13	65000
14	65001
15	65002
16	65003
17	65004
18	65005
19	65006
20	65007
21	65008
22	65009

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 33 von 45

Subindex	Beschreibung
23	65010
24	0 = End Mark

3.4.2 **Interface Parameter**

Kapitel	ab Seite
PNU 61000: Name of Station	34
PNU 61001: IP of Station	35
PNU 61002: MAC of Station	
PNU 61003: Default Gateway of Station	36
PNU 61004: Subnet Mask of Station	36

In der Werkseinstellung erfolgt die Einstellung des Stationsnamens und der IP-Konfiguration über das PROFINET DCP Protokoll.

Es gilt folgende Grundeinstellung:

Stationsname	"" (leer)
IP-Adresse	0.0.0.0
Subnetzmaske	0.0.0.0
Gateway	0.0.0.0

3.4.2.1 PNU 61000: Name of Station

Der Parameter liest den Gerätenamen aus. Länge des Namens von Null (gelöscht) bis zu 240 Zeichen, keine Nullterminierung.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	OCTET STRING
Zugriff	Read
PNU	61000

Wertebereich

Wert	Beschreibung
0 240	
0 (default)	Gerätenamen gelöscht/leer

Wertebereich

Subindex	Beschreibung	
0	Gerätenamen gelöscht/leer	
[n]	n+1 = Stringlänge des Gerätenamens	

3.4.2.2 PNU 61001: IP of Station

Der Parameter liest die IP-Adresse des Drehgebers.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	UINT32
Zugriff	Read
PNU	61001

Wertebereich

Wert	Beschreibung
0.0.0.0 255. 255. 255. 255.	IP-Adresse Drehgeber
0.0.0.0 (default)	

3.4.2.3 PNU 61002: MAC of Station

Der Parameter liest die MAC-ID des Drehgebers.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	OCTET STRING
Zugriff	Read
PNU	61002

Wertebereich

Wert	Beschreibung
98:02:D8:60:00:00 98:02:D8:6F:FF:FF	MAC-ID Drehgeber

Wertebereich

Subindex	Beschreibung
0	OUI (Organizationally Unique Identifier)
1	OUI (Organizationally Unique Identifier)
2	OUI (Organizationally Unique Identifier)
3	(*) Individueller Teil der MAC
4	(*) Individueller Teil der MAC
5	(*) Individueller Teil der MAC

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 35 von 45

3.4.2.4 PNU 61003: Default Gateway of Station

Der Parameter liest die IP-Adresse des Default-Gateways des Drehgebers.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	UINT32
Zugriff	Read
PNU	61003

Wertebereich

Wert	Beschreibung
0.0.0.0 255. 255. 255. 255.	IP-Adresse Default-Gateway
0.0.0.0 (default)	

PNU 61004: Subnet Mask of Station 3.4.2.5

Der Parameter liest die Subnetz-Maske des Netzwerks, in dem sich der Drehgeber befindet.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	UINT32
Zugriff	Read
PNU	61004

Wertebereich

Wert	Beschreibung
0.0.0.0 255. 255. 255. 255.	Subnetzmaske
0.0.0.0 (default)	

3.4.3 **Encoder Parameter**

Kapitel	
PNU 60000: N2/N4 Velocity Reference Value	37
PNU 60001: Velocity Value Normalization	37
PNU 65000: Preset Value 32bit	
PNU 65001: Operating Status	
PNU 65002: Preset Value 64Bit	39
PNU 65003: Reserviert	

Kapitel	
PNU 65004: Function Control	40
PNU 65005: Parameter Control	41
PNU 65006: Measuring Units per Revolution (MUR)	
PNU 65007: Total Measuring Range in Measuring Units (TMR) 42	
PNU 65008: Measuring Units per Revolution (MUR) 64 Bit 43	
PNU 65009: Total Measuring Range in Measuring Units (TMR) 64 Bit	43

3.4.3.1 PNU 60000: N2/N4 Velocity Reference Value

ACHTUNG	Änderungen werden erst nach einem Reset übernommen.
---------	---

Der ausgegebene Geschwindigkeitsistwert in den Signalen NIST_A und NIST_B ist ein Prozentsatz des hier angegebenen Geschwindigkeitsreferenzwerts (siehe Kapitel 3.3.1.7).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	U/Min

PROFINET

Datentyp	FloatingPoint
Zugriff	Read/Write
PNU	60000

Wertebereich

Wert	Beschreibung
1.175494e-38	Untergrenze
3.402823e+38	Obergrenze
4000 (default)	

3.4.3.2 PNU 60001: Velocity Value Normalization

ACHTUNG Änderungen werden erst nach einem Reset übernommen.

Über diesen Parameter kann die Einheit für die ausgegebene Geschwindigkeit eingestellt werden (siehe Kapitel 3.3.1.7).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned16
Zugriff	Read/Write
PNU	60001

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 37 von 45

Wertebereich

Wert	Beschreibung
0	Schritte (Positionen) / Sekunde
1	Schritte (Positionen) / 0.1 Sekunde
2	Schritte (Positionen) / 0.01 Sekunde
3 (default)	Umdrehungen / Minute (rpm)
4	N2/N4 normalisiert Geschwindigkeitsnormierung (Skalierung) wie in PROFIdrive- Telegrammen verwendet. Der Geschwindigkeitsistwert in NIST ist ein Prozentsatz des Sollwertes.

3.4.3.3 PNU 65000: Preset Value 32bit

Über diesen Parameter kann der Nullpunkt des Mess-Systems angeglichen werden (siehe Kapitel 3.3.1.8).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Integer32
Zugriff	Read/Write
PNU	65000

Wertebereich

Wert	Beschreibung
-268435455	Untergrenze
+268435455	Obergrenze
0 (default)	

3.4.3.4 PNU 65001: Operating Status

Der Parameter liest den aktuellen Betriebszustand und aktuelle Parameter.

Allgemeine Eigenschaften

EEPROM	no
Einheit	-

PROFINET

Datentyp	Unsigned32
Zugriff	Read
PNU	65001

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 38 von 45

Wertebereich

Subindex	Beschreibung
2	Fehler
4	Warnungen

Parameter 65001 [2]: Fehler

Fehler stehen im Zusammenhang mit den Fehlercodes, die in G1_XIST2 angezeigt werden:

• 0001h Sensor-/Gerätefehler - Bits: 0, 5, 6, 12, 14, 22, 24

0F01h Syntax-Fehler - Bits: 15

• 0F02h Master Sign of Life Fehler - Bits: 11

• 0F04h Sync-Fehler - Bits: 10

Bit	Definition	0	1
Bit 0	Positionsfehler (Hardware und Signalqualität)	Position OK	Positionsfehler
Bit 5	Positionsfehler (Frequenz /Geschwindigkeit)	Position OK	Positionsfehler
Bit 6	Ungültige Skalierung	Skalierungsparameter OK	Fehler Skalierungsparameter
Bit 12	Übergeschwindigkeit	Immer 0	-
Bit 14	Voreinstellungen fehlgeschlagen	Immer 0	-
Bit 22	Speicher	Kein Speicherfehler	Speicherfehler
Bit 24	Batteriespannung	Kein Batteriefehler	Batteriefehler

Parameter 65001 [4]: Warnungen

Bit	Definition	0	1
Bit 0	Positionsfehler (Hardware und Signalqualität)	Position OK	Positionswarnung
Bit 5	Positionsfehler (Frequenz /Geschwindigkeit)	Position OK	Positionswarnung
Bit 6	Ungültige Skalierung	Skalierungsparameter OK	Warnung Skalierungsparameter
Bit 12	Übergeschwindigkeit	Immer 0	-
Bit 14	Voreinstellungen fehlgeschlagen	Immer 0	-
Bit 22	Speicher	Kein Speicherfehler	Speicherwarnung
Bit 24	Batteriespannung	Kein Batteriefehler	Batteriewarnung

PNU 65002: Preset Value 64Bit 3.4.3.5

Über diesen Parameter kann der Nullpunkt des Mess-Systems angeglichen werden (siehe Kapitel 3.3.1.8).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Integer64
Zugriff	Read/Write
PNU	65002

Wertebereich

Wert	Beschreibung
-268435455	Untergrenze
+268435455	Obergrenze
0 (default)	

PNU 65004: Function Control 3.4.3.6

ACHTUNG	Änderungen werden erst nach einem Reset übernommen.
---------	---

Die Einstellung des Parameters Funktionssteuerung erlaubt oder sperrt die Funktionalität des Drehgebers entsprechend.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned32
Zugriff	Read/Write
PNU	65004

Wertebereich

Bit	Beschreibung
Bit 0	Code sequence 0 = CW
	1 = CCW
Bit 1	Class 4 Functionality 0 = Deaktiviert
	1 = Aktiviert
Bit 2	G1_XIST1 Preset Control 0 = Aktiviert
	1 =Deaktiviert
Bit 3	Scaling Function Control 0 = Deaktiviert
	1 = Aktiviert

Bit	Beschreibung
Bit 4	Alarm Channel Control
	0 = Deaktiviert
	1 = Aktiviert
Bit 5	V3.1 Compatibility Mode (Nicht genutzt)
Bit 6	Encoder Type
	0 = Rotativer Drehgeber
	1 = Linearer Drehgeber
Bit 7 31	Reserviert, immer 0

3.4.3.7 PNU 65005: Parameter Control

ACHTUNG	Änderungen werden erst nach einem Reset übernommen.
---------	---

Die Einstellung des Parameters Parameter Control erlaubt oder sperrt den Zugriff auf Parameter und spezielle gerätebezogene Funktionen.

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned16
Zugriff	Read/Write
PNU	65005

Wertebereich

Bit	Beschreibung
Bit 0, 1	Parameter-Initialisierungs-Steuerung 0 = (Default) Initialisierung des Parameters, aus PRM Datensatz.
	1 = Initialisierung des Parameters aus internem NV-RAM.
Bit 2 4	Parameter-Schreibschutz 0 = (Default) Write all: Alle Parameter des Base Mode Parameterkanals können gelesen und geschrieben werden.
	1 = Read only: Parameter des BMP Parameterkanals können nur gelesen werden.
	2 = Write Controller: Parameter des Base Mode Parameterkanals können nur von der Steuerung geschrieben werden.
	3 = Write Supervisor: Parameter des Base Mode Parameterkanals können nur vom Supervisor geschrieben werden.
Bit 5	Parameter 65005 Schreibschutz 0 = (Default) Write all: Zugriff auf Parameter 65005 und Parameter 971 über den Base Mode Parameterkanal lesend und schreibend.
	1 = Read only: Zugriff auf Parameter 65005 und Parameter 971 über den Base Mode Parameterkanal nur lesend.

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 41 von 45

Bit	Beschreibung
Bit 6	Schutz Geräte-Reset Steuerung 0 = (Default) Write all: Zugriff auf den Base Mode Parameterkanal lesend und schreibend.
	1 = Read only: Zugriff auf den Base Mode Parameterkanal nur lesend.
Bit 7 15	Reserviert, immer 0

3.4.3.8 PNU 65006: Measuring Units per Revolution (MUR)

ACHTUNG	Änderungen werden erst nach einem Reset übernommen.
---------	---

Über diesen Parameter wird die Auflösung des Mess-Systems in [Schritte pro Umdrehung] eingestellt (siehe Kapitel 3.3.1.5).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned32
Zugriff	Read/Write
PNU	65006

Wertebereich

Wert	
1 65535	
8192 (default)	

3.4.3.9 PNU 65007: Total Measuring Range in Measuring Units (TMR)

ACHTUNG Änderungen werden erst nach einem Reset übernommen.

Über diesen Parameter wird die Gesamtschrittzahl über den gesamten Messbereich des Mess-Systems festgelegt (siehe Kapitel 3.3.1.5 und Kapitel 3.3.1.6).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned32
Zugriff	Read/Write
PNU	65007

WH5850, WV5850 Datum: 23.08.2022 Art. Nr. 90779 Änd. Stand 159/22 Seite 42 von 45

Wertebereich

Wert
4 4294967295
8192 (default)

3.4.3.10 PNU 65008: Measuring Units per Revolution (MUR) 64 Bit

ACHTUNG	Änderungen werden erst nach einem Reset übernommen.
---------	---

Über diesen Parameter wird die Auflösung des Mess-Systems in [Schritte pro Umdrehung] eingestellt (siehe Kapitel 3.3.1.5).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned64
Zugriff	Read/Write
PNU	65008

Wertebereich

Wert	
1 65535	
8192 (default)	

3.4.3.11 PNU 65009: Total Measuring Range in Measuring Units (TMR) 64 Bit

ACHTUNG Änderungen werden erst nach einem Reset übernommen.

Über diesen Parameter wird die Gesamtschrittzahl über den gesamten Messbereich des Mess-Systems festgelegt (siehe Kapitel 3.3.1.5 und Kapitel 3.3.1.6).

Allgemeine Eigenschaften

EEPROM	yes
Einheit	-

PROFINET

Datentyp	Unsigned64
Zugriff	Read/Write
PNU	65009

Wertebereich

Wert	
4 4294967295	
8192 (default)	

Blockschaltbild 4

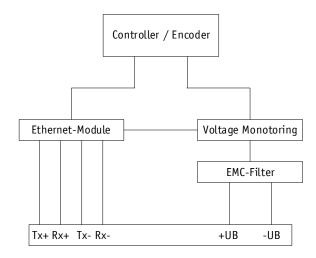


Abb. 4: Blockschaltbild

Seite 44 von 45

SIKO GmbH

Weihermattenweg 2 79256 Buchenbach

Telefon

+ 49 7661 394-0

Telefax

+ 49 7661 394-388

E-Mail

info@siko-global.com

Internet

www.siko-global.com

Service

support@siko-global.com

SIKO WH5850, WV5850 Änd. Stand 159/22 Datum: 23.08.2022 Art. Nr. 90779 Seite 45 von 45